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Abstract 

Heat stress poses significant and unexpected dangers, particularly in regions like Sub-Saharan Africa, 

where comprehensive heat risk assessments are lacking. In Central Africa, there has been little effort to 

investigate intra-city heat risk patterns due to limited data and computational resources at the institutional 

level. This study addresses this gap by synthesizing open-source geospatial datasets, including high-

resolution land surface temperature data from Landsat, to map health-related heat risk in Kinshasa, DRC. 

Using a quantitative risk framework that integrates hazard, exposure, and vulnerability components, the 

analysis was conducted in open-source QGIS software and Google Earth Engine. The findings reveal a 

heat risk gradient that systematically decreases outward from the city center. Urban areas exhibit medium 

to high heat risk, while suburban and rural areas display low and very low risk. This pattern underscores 

the influence of factors such as the distribution of socioeconomic status, age demographics, population 

density, and vegetation coverage on heat risk. The study offers valuable insights for policymakers to develop 

targeted heat adaptation and mitigation strategies tailored to the most vulnerable areas of Kinshasa. 
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Introduction 

The climate crisis is the defining environmental challenge of the 21st century. For the first time in human 

history, climate changes are occurring at a pace that exceeds natural historical variations (World Bank, 

2018). Between 2011 and 2020, the Earth’s surface temperature was approximately 1.1 °C higher than the 

late 19th-century average, making it the warmest period in the past 100,000 years (IPCC, 2021). This 

increase in global temperature, largely driven by anthropogenic greenhouse gas emissions, is fuelling global 

warming. 

Global warming is expected to intensify the frequency and severity of extreme heat events, including 

heatwaves and droughts (Perkins et al., 2012). These events pose significant threats to human health 

(Campbell et al., 2018), biodiversity (Harris et al., 2018), and global food security (Deryng et al., 2014), 

while also leading to substantial economic losses (Forzieri et al., 2018) and ecosystem disruptions. 

Heatwaves are particularly dangerous due to their variability in duration and intensity. Prolonged exposure 

to extreme heat can result in heat stress, which may cause dehydration (Costello et al., 2018), heat cramps 

(Hajat et al., 2010), and, in severe cases, fatalities from respiratory or cardiovascular failure (Oudin et al., 

2011). These heat related issues pose greater risk in regions with high vulnerability and exposure to heats, 

especially regions in lower latitudes.  

Sub-Saharan Africa is one of the regions that is most vulnerable to the effects of heat waves, due to its hot 

a combination of hot and humid climate conditions, rapid urbanization, and limited capacity for adaptation 

at both the institutional and community levels (Ayal 2021; Epule et al. 2021). Many cities in the region are 

already struggling to cope with rising heat stress, underscoring the urgent need for climate adaptation and 

mitigation strategies that are responsive to local contexts. Major urban centres such as Abidjan, Abuja, 

Accra, Addis Ababa, Cape Town, Dar es Salaam, Durban, Harare, Johannesburg, Juba, Kampala, Kinshasa, 

Lagos, Luanda, Lusaka, Mogadishu, Nairobi, Pretoria, Windhoek, Dodoma, Maputo, and Jinja are 

experiencing growing challenges related to extreme heat. One key factor is the urban heat island (UHI) 

effect, which occurs when urban areas become significantly warmer than surrounding rural areas due to 

dense infrastructure, limited vegetation, and altered surface energy balances. High levels of urbanization 

intensify this effect, thereby increasing the risks associated with heatwaves (Odame et al., 2018; Patz et al., 

2005; Tan et al., 2010).  

Recent studies across Africa have shown that extreme heat stress is not uniformly distributed within urban 

areas. For example,   Obe et al., (2023) found that in Lagos, Nigeria, heat risk is predominantly concentrated 

in densely populated, low-income neighborhoods. Similarly, Van De Walle et al., (2022) highlighted that 

the absence of vegetation exacerbates heat exposure in compact urban settlements in tropical African cities. 

Moreover, studies from other global contexts also reveal that heat extremes often disproportionately affect 

lower-income or socially disadvantaged communities. For instance, Zheng et al. (2020) found that the 

northern Jiangxi province of China, a heavily populated suburban region, faced the highest heat risk. 

Similarly, Maragno et al. (2020) reported that different urban forms in Padova, Italy, were associated with 

varying degrees of vulnerability. In Brazil, Lapola et al. (2019) demonstrated a strong link between 

socioeconomic inequality and heat exposure, with the poorest neighborhoods bearing the greatest risk. 

These patterns reflect the fact that heat hazard risk is largely shaped by the interaction of hazard intensity, 

exposure, and vulnerability—all of which can vary considerably even within the same city (Obe et al., 

2023a; Hu et al., 2019). Vulnerability indicators such as age demographics, socioeconomic status, housing 
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quality, and health conditions often differ across neighborhoods (Kang et al., 2020). For example, in Lahore, 

Pakistan, Rana et al. (2022) found that households in informal settlements had limited adaptive capacity, 

making them especially susceptible to extreme heat. Given this uneven distribution of risk factors, detailed 

assessments of exposure and vulnerability are critical for developing effective and equitable heat risk 

management strategies (Abrar et al., 2022). 

The growing frequency and intensity of heatwaves projected by climate models (Luber & McGeehin, 2008) 

make these findings even more concerning. While the World Meteorological Organization (WMO, 2023) 

notes that African countries have the capacity to anticipate heatwaves, the lack of high-resolution, field-

based meteorological data limits the ability to monitor, document, and respond to their impacts. This is 

particularly worrying in Central Africa, where research on heat waves and associated risks is significantly 

lacking, particularly in rapidly growing urban areas.  

In recent years, efforts have been made to address this knowledge gap in parts of Sub-Saharan Africa. For 

instance, Morakinyo et al. (2024) used ERA5-HEAT reanalysis data to examine long-term trends in heat 

stress across Nigeria, identifying predominantly positive trends over a 40-year period. However, the 

relatively coarse spatial resolution of ERA5-HEAT data restricts its ability to capture heat stress variations 

within urban areas. Similarly, while satellite-based land surface temperature (LST) data—such as Moderate 

Resolution Imaging Spectroradiometer (MODIS)—is widely used in heat-health assessments, its resolution 

remains insufficient for detailed intra-urban analysis (He et al., 2019). To address these limitations, some 

studies have begun integrating advanced modelling with geospatial datasets. For example, Obe et al. (2023) 

applied the Weather Research and Forecasting (WRF) model in Lagos to simulate Humidex-based heat 

stress during a specific heatwave. Their approach successfully identified high-risk zones within specific 

Local Climate Zones. Although this method provides valuable insights, its high computational demands 

may be impractical for many Central African cities that lack sufficient institutional and technical resources. 

Despite these contributions to understanding heat risk patterns across Sub-Saharan Africa, little to no effort 

has been made to investigate heat risk patterns in the Central African region. This study, therefore, 

represents a preliminary attempt to assess heat risk in Kinshasa, DR Congo. The key objective of the study 

is to conduct a spatial assessment of extreme heat exposure and associated risks in Kinshasa, Democratic 

Republic of Congo. The specific objectives are: (1) to map the spatial distribution of extreme heat using 

remote sensing data; (2) to assess the relationship between environmental and socio-demographic variables 

contributing to heat vulnerability; and (3) to demonstrate a scalable, data-accessible methodology for heat 

risk assessment in resource-constrained urban settings across Africa. These assessments are necessary for 

creating responsive, inclusive and practical heat mitigation strategies which will help protect the at-risk 

populations from the growing heat risks. 

Materials and Methods 

Study Area 

Kinshasa (Figure 1) is the capital and largest city of the Democratic Republic of Congo, and one of the 

fastest-growing megacities in Sub-Saharan Africa. It spans approximately 9,965 km² along the southern 

banks of the Pool Malebo, with flat, low-lying terrain averaging 300 meters above sea level (Kinyamba et 

al., 2015). With a population density of 1,462 people per km², Kinshasa is the most densely populated area 

in the DRC and faces significant heat-related challenges linked to rapid urban growth. 
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The city has a tropical wet and dry climate, with an annual mean temperature of 26°C. Data from WorldData 

(2023) indicate that the hottest period runs from February to mid-May, with daily highs exceeding 31°C. 

USAID (2023) reports a warming trend of 0.17°C per decade over the past 30 years, with the hottest days 

increasing by about 0.25°C per decade. While seasonal variation is moderate, March to May records the 

highest average daytime temperatures, contributing to increased heat stress. 

Kinshasa's dense urban form and limited vegetation contribute to urban heat island effects, especially in 

informal settlements. Although the city generates 85% of the country’s Gross Domestic Product (GDP), 

only 13% of the national population resides there (Chirisa et al., 2017). The economy is largely informal, 

with 97% of workers outside formal employment (AFRISTAT & National Institute of Statistics, 2012; 

Flouriot, 2013), limiting access to essential services and adaptive capacity. 

These geographic, climatic, and socioeconomic characteristics make Kinshasa highly vulnerable to extreme 

heat, highlighting the need for spatially detailed risk assessments to inform targeted mitigation strategies. 

 

Figure 1:. Map of Kinshasa, DRC 

Heat Risk Assessment  

The study employed Crichton's Risk Triangle (Crichton 1999), which is predicated on the spatial 

coincidence of hazard, exposure, and vulnerability as the foundation for this spatial risk assessment. 

According to the Intergovernmental Panel on Climate Change (IPCC), climate risk arises from the 

interaction of three key factors: hazard, exposure, and vulnerability. Hazard refers to the potential 

occurrence of climate-related physical events or trends that could cause damage and loss, while exposure 

relates to the presence of assets, services, resources, and infrastructure that could be negatively impacted 

by these hazards. Vulnerability is the tendency or predisposition of a system or population to be adversely 

affected by such events (IPCC, 2014). Thus, heat risk can be seen as a function of the heat hazard, exposure 

and vulnerability components as shown in equation (1) below: 

𝐻𝑒𝑎𝑡 𝑟𝑖𝑠𝑘 = 𝑓(𝐻𝑒𝑎𝑡 ℎ𝑎𝑧𝑎𝑟𝑑, 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)            (1) 
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In this study, the hazard is the land surface temperature, which is derived from the Landsat imagery. While 

the spatial pattern of the population density is used as an exposure indicator. Several variables including 

age, socioeconomic status, distribution of vegetation, and vulnerability were used to represent the 

vulnerability indicators following Kirsten et al. (2017) and Obe et al. (2023).  Table 1 summarizes the data 

used for this analysis 

Table 1: Summary of Datasets Used for Heat Risk Assessment in Kinshasa 

Component Data Source Spatial 

Resolution 

Purpose / Description 

Hazard Land Surface 

Temperature 

(LST) 

Landsat-8 (TIRS10), 

processed via Google 

Earth Engine 

30 m 

(resampled to 

100 m) 

Represents spatial distribution 

of heat hazard; based on 10-

year median composites 

Exposure Population 

Density 

WorldPop  ~1 km (30 arc-

seconds) 

Indicates population 

distribution to assess exposure 

to heat 

Vulnerability  Vulnerable Age 

Groups 

WorldPop  ~100 m (3 arc-

seconds) 

Identifies children (<10 yrs) and 

elderly (>65 yrs) as vulnerable 

population segments 

Relative Wealth 

Index (RWI) 

Humanitarian Data 

Exchange 

~2.4 km 

(rasterized to 

100 m) 

Proxy for socioeconomic status; 

lower values imply higher 

vulnerability 

Vegetation 

(NDVI) 

Landsat-8 (Red & NIR 

bands), via Google 

Earth Engine 

30 m 

(resampled to 

100 m) 

Proxy for adaptive capacity; 

higher vegetation reduces heat 

risk through cooling effects 

Indicators for the Hazard Component 

Landsat-8 imagery, with a spatial resolution of 30 meters, was utilized as the primary data source for 

assessing the hazard component. To minimize uncertainty caused by interannual climate variability, we 

used the median of composite images spanning 10 years (2013-2023), focusing on the months of March, 

April, and May, with minimal cloud cover. This process was conducted using the Google Earth Engine 

platform. The Land Surface Temperature (LST) was derived from the Landsat-8 thermal infrared band 

(TIRS10), using an algorithm for automated LST mapping as developed by Avdan and Jovanovska (2016). 

The LST was then calculated using the following formula: 

𝑇𝑠  =  
𝐵𝑇

1 + (
𝜆𝐵𝑇

𝜌
) 𝑙𝑛 𝜀 

                                                                          (2) 

where 𝑇𝑠is the LST in degrees celsius (∘C), 𝐵𝑇 is at-sensor Brightness Temperature (∘C), 𝜆 is the 

wavelength of emitted radiance, 𝜀 is the emissivity and 

𝜌 =  
ℎ𝑐

𝜎
                                                                     (3) 

where 𝜎 is the Boltzmann constant (1.38 × 10−23𝐽/𝐾), ℎ is Planck’s constant (6.626 × 10−34𝐽𝑠), and 𝑐 is 

the velocity of light (2.998 × 108𝑚/𝑠), (Weng et al. 2004). 

https://www.worldpop.org/
https://www.worldpop.org/
https://data.humdata.org/
https://data.humdata.org/
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Indicators for the Exposure Component 

The grid gross population density data was downloaded from https://www.worldpop.org and used as the 

exposure component as studies have shown that where there are no people, there is no exposure and 

consequently, no risk (Buscail et al. 2012; Ma et al. 2023). The population density data acquired at a spatial 

resolution of 30 arc seconds (~1 km) contains estimated population density at the grid-cell level (Table 1). 

Its unit, being the number of people per square kilometer, is based on country totals adjusted to match the 

official United Nations population estimates.  Compared to census data, which only offers the total 

population of each census unit, WorldPop gridded population density data provides higher resolution 

population distribution information, which is crucial for analyzing heat-related risk (Loughnan et al. 2014; 

Bao et al. 2015; Ma et al. 2023). 

Indicators for the Vulnerability Component 

Age Structure Data 

The age structure data, which was acquired from https://www.worldpop.org at a spatial resolution of 3 arc 

seconds (~ 100 meters) contain estimates of the total number of people per grid square broken down by 

gender and age groupings. Its units are the estimated number of males/ females in each age group per grid 

square with country totals adjusted to match the official United Nations population estimates. Studies have 

shown that certain population groups are more susceptible to heat stress than others. Individuals with 

chronic illnesses or impairments, the elderly, small children, and those from low-income backgrounds have 

demonstrated high susceptibility to heat-related illnesses (Hajat & Kosatky 2010; Buscail et al. 2012; 

Morabito et al. 2015). According to Kenny et al. (2018), due to their bodies' potential incapacity to regulate 

temperature, older adults and small children are frequently more susceptible to the negative consequences 

of heat stress. In this study, we consider people within the age group of above 65 years and below 10 years 

to be the most vulnerable to heat risk, as demonstrated by Obe et al. (2023). 

Relative Wealth Index Data 

The relative wealth Index (RWI) data, which was downloaded from https://data.humdata.org, estimates the 

relative standard of living across 93 low- and middle-income countries using de-identified connectivity 

data, satellite imagery, and other nontraditional sources. The dataset is provided as point data, with each 

point representing an area approximately 2.4 km in size. For this study, the vector data was rasterized to a 

100-meter spatial resolution. Socioeconomic status was inferred using RWI values, based on the assumption 

that the poorest neighborhoods tend to be the most vulnerable to heat risk (Lapola et al. 2019; Adegun et 

al. 2021). In contrast, wealthier areas are considered less vulnerable due to better access to adaptive 

infrastructure such as air conditioning and reliable electricity. 

NDVI: Landsat Data 

The Normalized Difference Vegetation Index (NDVI) is a widely recognized remote sensing metric used 

to assess vegetation health and density. It is calculated from the reflectance values of specific spectral bands 

in satellite imagery, particularly the red (R) and near-infrared (NIR) bands. 

 

https://www.worldpop.org/
https://www.worldpop.org/
https://data.humdata.org/
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Vegetation and water coverage are often associated with lower temperatures and reduced heat-related 

mortality, as they can absorb and mitigate heat (Bowler et al. 2010; Zhang et al. 2016; Ma et al. 2023). 

Therefore, vegetation indices like NDVI can serve as important indicators of vulnerability to heat (Defries 

et al. 1994; Xu et al. 2006). In this study, the spatial pattern of NDVI was generated using the Google Earth 

Engine cloud computing platform, applying equation (4) to the reflectance values from the red (R) and near-

infrared (NIR) bands of the landsat-8 composite image: 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
                                                              (4) 

Vegetation is selected as a key indicator of vulnerability because it provides evaporative cooling, which 

helps mitigate the acute heat stress commonly observed in urban areas (Van de Walle et al. 2022; Obe et 

al. 2023). The NDVI represents the percentage of healthy vegetation in the area, which is crucial for 

understanding the region's resilience to heat stress. 

Method of Analysis 

The study was conducted through a series of systematic steps, as illustrated in the framework presented in 

Figure 2. The analysis began by extracting the LST and NDVI from a ten-year composite Landsat-8 image 

(2013-2023) using the Google Earth Engine cloud computing platform. LST was utilized to represent the 

hazard component, while the vulnerability component was assessed through several indicators: the 

vulnerable age group, the Relative Wealth Index (RWI), and the NDVI. The exposure component was 

represented by gridded population density data.  

To evaluate the overall heat-related risk, we employed Crichton's risk triangle framework, which integrates 

the three key components—heat hazard, heat exposure, and heat vulnerability. By multiplying these 

components, we were able to generate a comprehensive map of heat-related health risks, identifying areas 

where the population is most at risk.  

Normalization  

To ensure uniformity and comparability across datasets, each image was resampled to a consistent 100 m 

resolution. The results were then normalized to a scale between 0.1 and 0.9 using Equation (5) following 

Dong et al. (2020). This step was crucial for minimizing errors that could arise from combining multiple 

data sources with varying spatial resolutions, thereby enhancing data compatibility and facilitating 

subsequent aggregation. 

𝑋! = 0.1 +  
(𝑋 −  𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛)
 ∗  (0.9 − 0.1)                       (5) 

where 𝑋! the standardized value, 𝑋 is the original value, and 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 represent the minimum and 

maximum values of the original indicators, respectively.  

Vulnerability Layer 

The vulnerability layer was estimated using three key indicators: the vulnerable age group, the NDVI, and 

the RWI. It is important to note that both NDVI and RWI inversely correlate with vulnerability, as higher 

vegetation coverage and wealth reduce heat risk (adaptive capacity). Therefore, the values for NDVI and 
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RWI were inverted following Kerstin et al. (2017). Similar to the approach utilized in previous studies, the 

vulnerability layer shown in equation (6) was calculated as an equally weighted linear sum of these three 

sub-indicators (Dong et al. 2014; Obe et al. 2023). 

𝑉 =  
(𝑣𝑎 − 𝑁𝐷𝑉𝐼 − 𝑅𝑊𝐼)

3
                                                         (6) 

Where 𝑉 is the vulnerability layer, 𝑣𝑎  is the population of the vulnerable age group, 𝑅𝑊𝐼 is the relative 

wealth index, and 𝑁𝐷𝑉𝐼 is the vegetation index.  

Aggregate Risk Layer 

The final heat risk layer (FHRL) was computed by multiplying the normalized and equally weighted 

components of hazard, exposure, and vulnerability as shown in equation (7). Previous studies such as Chen 

et al. (2021), Ma et al. (2023), Obe et al. (2023) have shown the multiplicative principle to capture more 

nuanced interactions between components than the additive principle. 

𝐹𝐻𝑅𝐿 =  𝐻𝑎𝑧𝑎𝑟𝑑 ∗  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∗  𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦       (7) 

Where 𝐹𝐻𝑅𝐿 is the resulting final heat risk layer, which is subsequently classified using Jenks Natural 

Breaks for better visualization and interpretation of risk distribution. 

 

Figure 2: Methodology framework to assess heat risk in Kinshasa. 

Results and Discussion 

LST Spatial Pattern Analysis  

The analysis of Land Surface Temperature (LST) across Kinshasa reveals a temperature range from 18°C 

to 27.83°C, with significant spatial variability. The highest temperatures were concentrated in the eastern 

and southern parts of the city, while lower temperatures were predominantly found in the western and 

northern regions. Several factors could potentially contribute to this variation in LST values, including 

vegetation cover, proximity to water bodies, industrialization, and urbanization. According to Bindajam et 
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al. (2020), areas with dense vegetation tend to exhibit lower LST values due to the cooling effects generated 

by plant transpiration and shading. They further explained that dense vegetation both blocks incoming solar 

radiation and cools the surface by evaporating water from leaves, leading to significantly cooler ground 

temperatures compared to sparse or built‑up areas. This is evident in the western parts of Kinshasa, where 

the presence of the Congo River and surrounding vegetation plays a crucial role in moderating temperatures. 

The Congo River functions as an urban cooling corridor, reducing nearby LST by 1–1.5 °C, and creates a 

more favorable microclimate that encourages settlements which is evidenced by enhanced urbanization 

along its banks (Chen et al. 2014; Guo et al. 2023). However, despite the cooling effect of the river, the 

western regions near the Congo River also show high LST values due to the dense population and associated 

anthropogenic activities. Vujovic et al. (2021) confirmed that urban areas, particularly those with minimal 

vegetation and high population density, contribute to the UHI effect, where built-up surfaces absorb and 

retain heat, leading to increased LST values. Furthermore, the eastern and southern parts of Kinshasa, 

characterized by significant agricultural activities (Mufungizi et al. 2023), show higher LST values. The 

clearing of land for agriculture in these regions reduces vegetation cover, thereby increasing surface 

temperatures. This pattern highlights the impact of land use changes on the thermal environment of the city 

(Ebode 2023). 

 

Figure 3: Spatial distribution of median LST (2013-2023) in Kinshasa – prepared by Author using GEE & QGIS 

NDVI Spatial Pattern Analysis 

The Normalized Difference Vegetation Index (NDVI) for Kinshasa reveals a wide range of vegetative 

greenness, from 0.87 to 0.1 (Figure 4). This variation highlights significant differences in vegetation cover 

across the city. Mont-Ngafula and Maluku municipalities stand out with NDVI values of 0.69 and 0.64, 

respectively, indicating substantial vegetation cover in these areas. In contrast, Ngiri-Ngiri and Ngaba 

municipalities exhibit lower NDVI values of 0.32 and 0.34, respectively, primarily due to extensive built-

up areas and urban development (Kabanyegeye et al. 2024). In the southwestern part of Kinshasa, notable 

vegetation is observed, particularly along the Nsele River. This region benefits from a higher tree cover, 

which is essential for cooling and mitigating urban heat effects. The presence of significant green spaces in 

this area contributes to a more moderate LST compared to more densely built-up regions (Bindajam et al. 
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2020). To the northeast of Kinshasa, the Mampu agroforestry plantations demonstrate another critical aspect 

of vegetation cover. These plantations, predominantly consisting of Acacia auriculiformis woodlands and 

areas dedicated to cassava production (Péroches et al. 2022), exhibit NDVI values ranging from 0.44 to 

0.69.  

The spatial distribution of NDVI values underscores the influence of both natural and anthropogenic factors 

on vegetation patterns in Kinshasa and how it may affect the distribution of heat risk (Mufungizi et al. 2023; 

IPCC 2022). Areas with high NDVI values, such as Mont-Ngafula and Maluku, contribute positively to 

local climate regulation by providing shade and reducing heat absorption and hence low vulnerability. 

Conversely, regions with lower NDVI values, such as Ngiri-Ngiri and Ngaba, reflect the impact of 

urbanization on vegetation cover, leading to increased heat retention and higher LST and high vulnerability 

to heat risk (Vujovic et al. 2021). Generally, the NDVI spatial patterns is an indication of the varying 

degrees of vegetation cover across Kinshasa and its implications for urban heat dynamics. Understanding 

these patterns is essential for developing strategies to enhance green spaces and improve urban resilience 

to heat risk. 

 

Figure 4: Spatial distribution of median NDVI (2013-2023) in Kinshasa – prepared by Author using GEE & QGIS 

Population Density (<10 & >65) Spatial Pattern Analysis  

In Kinshasa, areas with high populations of individuals in vulnerable age groups were mainly found in 

densely populated urban centers and settlements, particularly in the western part of the city as shown in 

Figure 5. Bumbu and Ngaba municipalities had the highest concentrations of people aged below 10 and 

above 65, whereas Maluku and Nsele municipalities had the lowest populations in this age range. The high 

population influx of people has largely been attributed to the increase in population growth in Kinshasa 

(Batana et al. 2021a) with Anglewicz (2017) suggesting that the in-migrants high fertility also contributed 

to Kinshasa’s fast population.  
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Figure 5: Spatial distribution of vulnerable age groups (<10 & >65 years) in Kinshasa – prepared by Author using QGIS 

Spatial Distribution of Risk Components 

The three risk components derived from the selected indicators were classified into five categories (very 

low, low, medium, high, and very high) using the "Natural Breaks" technique. Their spatial distributions 

were depicted in Figure 6, with the thresholds that defined the categories for each component displayed 

behind the categories accordingly. 

Hazard 

Figure 6(a) shows that low-hazard areas (“very low” and “low”) are mainly located in the western part of 

Kinshasa, while high-hazard areas (“high” and “very high”) are concentrated in the eastern and southeastern 

regions. The elevated heat hazard in the eastern areas corresponds to sparse vegetation cover, which reduces 

natural cooling through evapotranspiration (Bowler et al., 2010; Li et al., 2017). In the western region, high 

hazard zones are primarily in the dense urban core where built-up surfaces dominate, vegetation is minimal, 

and Land Surface Temperature (LST) is elevated. The city’s periphery, characterized by higher vegetation 

density, shows low to medium heat hazard, highlighting the strong inverse relationship between vegetation 

cover and surface temperature (Voogt & Oke, 2003; IPCC, 2022). This pattern aligns with established 

Urban Heat Island (UHI) theory, which attributes higher urban temperatures to impervious surfaces and 

reduced greenery (Oke, 1982; Vujovic et al., 2021). These findings underscore the potential of urban 

greening strategies, such as tree planting, to mitigate heat hazard by lowering LST and improving urban 

microclimates (Li et al., 2017; Bowler et al., 2010). 

Exposure 

The spatial distribution of heat exposure in Kinshasa, presented in Figure 6(b), reveals a pronounced 

concentration of high-exposure zones within the densely populated urban core. Areas such as Kasa-Vubu, 

Ngiri-Ngiri, and Bumbu exhibit very high exposure levels, which can be attributed to both the high 

population density and the limited vegetation cover observed in these districts. This pattern aligns with the 

findings of Obe et al. (2023), who demonstrated that exposure to climate-related risks such as extreme heat 
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is strongly correlated with urban population density and land-use characteristics. Urban centers like 

Kinshasa experience elevated exposure due to intense in-migration from rural regions, as people seek better 

access to employment, commerce, education, and infrastructure. This internal migration trend, driven by 

socioeconomic push-pull factors, leads to the rapid expansion of informal settlements and high-density 

neighbourhoods with inadequate green infrastructure (Nsokimieno et al., 2010; UN-Habitat, 2020). These 

areas often lack tree cover and open spaces, exacerbating exposure to urban heat island effects and 

intensifying residents' vulnerability to extreme heat events (Kabisch et al., 2016; IPCC, 2022). 

Moreover, the spatial clustering of high exposure zones within Kinshasa reflects typical urbanization trends 

seen in many sub-Saharan African cities, where rapid urban growth outpaces planning and infrastructure 

development (Dodman, 2009; Simon et al., 2016). As noted by Mufungizi & Akilimali (2024), Kinshasa’s 

demographic expansion has been most intense in its urban core, where economic activity is concentrated 

and where land pressure limits the inclusion of climate-adaptive features such as parks and urban forests. 

In contrast, the peripheral and rural parts of Kinshasa show predominantly low exposure levels. These areas 

are more sparsely populated and typically characterized by larger plots of land per household, greater 

vegetation coverage, and lower impervious surface ratios. As such, they are less affected by anthropogenic 

heat accumulation, which contributes to a lower population exposure to heat stress (López-Bueno et al., 

2021; Van de Walle et al., 2022). 

Overall, the exposure distribution across Kinshasa mirrors broader urban environmental justice challenges, 

whereby poorer, densely populated communities are often more exposed to climate hazards due to structural 

inequalities in land use, housing, and access to green infrastructure (Harlan et al., 2006; Rufat et al., 2015). 

Vulnerability  

The spatial distribution of vulnerability across Kinshasa reveals critical disparities linked to population 

demographics, infrastructure, and vegetation cover. High vulnerability is concentrated in the western parts 

of the city, particularly in densely populated neighbourhoods like Bumbu and northern Selembao. These 

areas house a significant proportion of age-dependent populations (children under 10 and adults over 65) 

(Figure 5), who are more physiologically susceptible to extreme heat, as identified in previous studies 

(Uejio et al., 2011; Harlan et al., 2006). Moreover, these regions exhibit sparse vegetation (Figure 4), 

exacerbating exposure to urban heat due to the lack of cooling from green infrastructure (Li et al., 2017; 

IPCC, 2022). Many residents in these areas live in informal settlements or low-income conditions and have 

limited access to adaptive measures such as electric fans or air conditioning. This aligns with findings by 

Batana et al. (2021b), who noted that poverty in Kinshasa is disproportionately concentrated in inner-city 

neighbourhoods, leaving populations more vulnerable to environmental stressors. Similarly, Rufat et al. 

(2015) emphasized that vulnerability to climate hazards is amplified by pre-existing socioeconomic 

inequalities, especially in poorly planned urban settings. 

Conversely, neighbourhoods with better infrastructure and socioeconomic conditions—often on the city’s 

periphery—demonstrate lower vulnerability. These areas benefit from more deliberate urban planning, 

greater access to cooling technologies, and relatively higher vegetation coverage, all of which reduce 

sensitivity to heat extremes (IPCC, 2022; Kabisch et al., 2016). In other parts of Kinshasa, including 

sections of the north, east, and south, vulnerability levels tend to be moderate and spatially fragmented. 
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These zones are partially buffered by adjacent vegetation and less intense urban development, which 

collectively mitigate the intensity of heat risk (López-Bueno et al., 2021). 

 

Figure 6: (a) Spatial distribution of heat hazard, (b) heat exposure, and (c) heat vulnerability 

Spatial Distribution of the Final Heat Risk Layer 

The integration of hazard, exposure, and vulnerability components using a multiplicative framework 

revealed clear spatial variations in heat-related risk across Kinshasa, DRC. The resulting heat risk map 

(Figure 7) displays a distinct spatial gradient, with lower risk levels concentrated along the city’s periphery 

and higher risk levels prevailing in central urban zones. This pattern is consistent with the urban heat 

vulnerability literature and can be understood through a combination of biophysical and socioeconomic 

determinants. 

 

Figure 7:. Final Heat risk map of Kinshasa DRC – prepared by Author using QGIS 
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Peripheral areas of Kinshasa generally exhibit low to very-low heat risk. This reduced risk correlates with 

several protective factors identified in urban climate vulnerability studies. First, these areas tend to be 

wealthier and more spaciously planned, enabling access to adaptive measures such as air conditioning, 

electric fans, and well-ventilated buildings—critical tools for mitigating heat stress (Batana et al., 2021b; 

IPCC, 2022; Rufat et al., 2015). The relationship between affluence and lower heat vulnerability has been 

extensively documented. For instance, Harlan et al. (2006) found that higher-income neighbourhoods in 

Phoenix, Arizona, were systematically less exposed to extreme heat due to better infrastructure, vegetative 

cover, and access to cooling appliances. Similar results were reported in South Africa, where Pasquini et 

al. (2020) showed that suburban communities experienced less heat-related discomfort owing to higher 

socioeconomic capital and better housing design. Vegetation also plays a crucial role in modulating local 

temperatures and thereby influencing heat risk. The peripheral zones of Kinshasa are characterized by 

higher NDVI values, which signify dense vegetation cover. Numerous studies have linked vegetation to 

microclimate regulation via evapotranspiration and shading effects (Zhang et al., 2016; Van de Walle et al., 

2022). These findings support the observed lower LST and risk levels in greener, less urbanized 

neighbourhoods. 

In contrast, the central districts of Kinshasa exhibit medium to very-high heat risk levels. These areas are 

typified by high population densities, limited vegetation, and widespread informal settlements—factors that 

collectively increase both exposure and vulnerability. Slum communities often lack access to reliable 

electricity, ventilation, and cooling appliances, exacerbating susceptibility to heat stress (Hugo & 

Sonnendecker, 2023). Comparable results have been observed in other African cities, where informal urban 

zones are disproportionately affected by thermal extremes due to limited adaptive capacity (Tusting et al., 

2019; Olazabal et al., 2021). Moreover, Uejio et al. (2011) emphasize that densely populated, low-income 

areas often concentrate heat risk due to higher ambient temperatures and poorer housing conditions. The 

rural hinterlands surrounding Kinshasa, in contrast, tend to display very-low risk levels. These regions 

benefit from lower exposure due to sparse population density and reduced urban heat island effects. Similar 

trends have been reported in other tropical settings; López-Bueno et al. (2021) found that rural residents in 

sub-Saharan Africa were generally less exposed to heat-related morbidity due to more dispersed settlements 

and the cooling influence of surrounding vegetation. 

Overall, the spatial heat risk distribution in Kinshasa reveals a concentric pattern of decreasing risk with 

distance from the urban core. This gradient aligns with findings from previous studies in diverse 

geographies—ranging from Accra to Delhi—where heat risk is shaped by complex interactions among 

social inequality, environmental factors, and infrastructure (Ma et al., 2023; Dong et al., 2020; Hajat & 

Kosatky, 2010). The corroboration from this literature reinforces the robustness of the observed patterns in 

Kinshasa and underscores the urgent need for spatially targeted heat adaptation strategies in highly 

vulnerable urban neighbourhoods. 

Conclusion 

This study investigates the spatial distribution of various environmental and human factors and how they 

interplay to give insight into the underlying heat risk in the study area. The spatial distribution of LST in 

Kinshasa reflects a complex interplay of natural and anthropogenic factors. Lower LST values in the 

western and northern regions are strongly associated with dense vegetation and proximity to the Congo 

River, which provide cooling effects through evapotranspiration and water regulation. Conversely, the 
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eastern and southern parts exhibit higher LST values, largely driven by agricultural land clearing and 

reduced vegetation cover. The spatial distribution of NDVI in Kinshasa reveals clear disparities in 

vegetation cover influenced by both natural landscapes and human activities. These variations directly 

impact local LST and vulnerability to heat, emphasizing the critical role of urban greening in enhancing 

climate resilience and mitigating heat-related risks across the city.  

The study also highlights a clear demographic concentration of vulnerable age groups in the densely 

populated western urban centers of Kinshasa, particularly in Bumbu and Ngaba while peripheral 

municipalities such as Maluku and Nsele exhibit lower population densities and fewer individuals in 

sensitive age categories. Ultimately, the spatial distribution of heat risk in Kinshasa reveals a clear urban-

to-rural gradient, with very-high to medium risk levels concentrated in the densely populated and 

socioeconomically disadvantaged central urban areas, and low to very-low risk levels found in the 

peripheral and rural regions. This pattern highlights the critical role of socioeconomic status, vegetation 

cover, infrastructure quality, and population density in shaping heat risk. 

As a pioneering study in Central Africa, this research faced several limitations. Data constraints restricted 

the analysis to a limited set of indicators, including NDVI, RWI, LST, and population density. Future 

assessments of heat-related health risks should incorporate additional socioeconomic factors, such as the 

proportion of people with disabilities (Paranunzio et al., 2021), the number of air conditioners per household 

(Hu et al., 2017; Chen et al., 2018), and the availability of hospital beds (Chen et al.2018; Zhang et al., 

2019). These factors could provide a more comprehensive understanding of exposure and vulnerability. 

Additionally, the RWI data, acquired with a resolution of approximately 2400 meters and presented as point 

features, were rasterized using the Kriging method, which assumes spatial autocorrelation. This assumption 

may introduce uncertainties, particularly due to the limited number of data points and the coarse resolution. 

Despite these limitations, the study found that central urban areas of Kinshasa are at higher risk for heat-

related health issues compared to the urban periphery and rural areas. The high vulnerability of urban 

populations, characterized by dense living conditions and lower socioeconomic status, significantly 

contributes to this heightened risk. While some research suggests that rural areas might face greater heat 

risks (Hu et al., 2017), our findings align with studies indicating that high dense urban areas can be 

extremely vulnerable to heat, given factors like urban poverty, congestion, and inadequate health 

infrastructure (Aubrecht et al., 2013). The research also highlighted that densely populated areas pose the 

greatest health risk from heat exposure. In order to address this, there is a need for mitigation strategies to  

focus on reducing exposure levels, particularly in Kinshasa’s densely populated districts. The government 

should Implement urban forestry programs by planting trees along streets and markets especially in high-

risk urban zones like Ngaba, subsidize low-energy cooling technologies for low-income households and 

make heat risk mapping and modeling a standard input into land use planning, housing policy, and 

infrastructure development. This aligns with broader adaptation and mitigation plans aimed at minimizing 

health risks related to extreme heat (IPCC, 2012; IPCC, 2014). This study provides important insights into 

the spatial distribution of health-related heat risk in Kinshasa which offers valuable information for 

policymakers to develop targeted adaptation and mitigation strategies tailored to the reality of the most 

vulnerable areas. 
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