

Documentation of the Significance of Local and Indigenous Knowledge Systems in the Conservation of the Malindi–Watamu–Arabuko Sokoke Biosphere Reserve

Nevil Sigana

*Corresponding author: nevilsigana@gmail.com

<https://doi.org/10.62049/jkncu.v5i1.451>

Abstract

This study examines the role of local and indigenous knowledge systems (LINKS) in the conservation of the Malindi–Watamu–Arabuko Sokoke Biosphere Reserve (MWASBR) in Kenya. The biosphere reserve is of significant ecological importance, encompassing coastal forests, coral reefs, mangroves, and diverse marine ecosystems. Despite its value, MWASBR faces escalating pressures from deforestation, overfishing, poverty, and climate change. Indigenous knowledge, developed and transmitted over generations, offers important insights and strategies for sustainable natural resource management. Using data from 150 completed questionnaires, field observations, and a review of relevant literature, the study investigated existing indigenous conservation practices, the challenges faced by local communities, and potential pathways for integrating traditional knowledge systems into contemporary conservation frameworks. The findings reveal a high level of awareness among respondents of indigenous practices, including the use of medicinal plants, protection of sacred groves, mangrove conservation, traditional fishing regulations, weather forecasting based on natural indicators, and the preservation of oral traditions. However, the continuity of these practices is increasingly threatened by climate change, resource over exploitation, and the erosion of traditional knowledge. Respondents identified key solutions such as strengthening community education, engaging youth, promoting alternative livelihoods, and formally documenting indigenous knowledge to ensure its transmission. This research highlights the critical importance of recognizing indigenous knowledge as a fundamental component of biodiversity conservation. Integrating LINKS with scientific approaches can enhance ecosystem management, strengthen community participation, and support national and international conservation objectives, including those of the UNESCO Man and the Biosphere Programme. The study concludes that empowering local communities while safeguarding cultural heritage is essential for ensuring the long-term resilience and sustainability of MWASBR.

Keywords: Indigenous Knowledge, Biosphere Reserve, Conservation, Arabuko Sokoke, Malindi, Watamu, Sustainable Livelihoods

Introduction

Background of Study

The conservation of biodiversity has increasingly become a central theme in global sustainability discourse. Growing awareness of ecosystem degradation, climate change, and loss of cultural heritage has led to a recognition of the importance of both scientific and traditional systems of knowledge in addressing these challenges. Globally, local and indigenous knowledge systems (LINKS) have been acknowledged as crucial in shaping sustainable natural resource management practices (Berkes, 1999; Gadgil, Berkes, & Folke, 1993).

In Kenya, biosphere reserves designated under the UNESCO Man and the Biosphere (MAB) Programme provide important testing grounds for integrating conservation, development, and knowledge systems. Among these, the Malindi–Watamu–Arabuko Sokoke Biosphere Reserve (MWASBR) stands out as an ecologically and culturally unique area that combines marine and terrestrial ecosystems, including mangroves, seagrass beds, coral reefs, and the Arabuko Sokoke coastal forest. The biosphere reserve is not only home to globally threatened species but also sustains communities that have developed intricate systems of traditional knowledge for resource use and conservation (UNESCO, 2021).

Statement of the Problem

Despite its ecological and cultural importance, the MWASBR faces mounting challenges, including deforestation, overfishing, climate change, poverty, and loss of traditional knowledge systems. While scientific approaches to conservation have been implemented, they often overlook or undervalue indigenous knowledge that has historically ensured the sustainable use of ecosystems (Huntington, 2000). The rapid modernization and changing socio-economic dynamics in coastal Kenya further exacerbate the erosion of traditional practices, as younger generations shift away from ancestral knowledge (Kenya Wildlife Service [KWS], 2002).

Without intentional efforts to document and integrate these knowledge systems into contemporary conservation strategies, valuable practices may be lost, threatening both biodiversity and cultural heritage. Addressing this problem requires understanding how local communities perceive conservation, the knowledge systems they use, and the challenges they face in sustaining them.

Objectives of the Study

The main objective of this research was to assess the role of local and indigenous knowledge systems in the conservation of the MWASBR. Specific objectives included:

- To document the types of indigenous knowledge systems practiced by local communities in Malindi, Watamu, and Arabuko Sokoke.
- To identify the challenges facing the preservation and application of indigenous knowledge in conservation.
- To analyze community perceptions of conservation and proposed solutions for strengthening knowledge systems.
- To provide recommendations for integrating LINKS into formal conservation policies and management plans.

Research Questions

This study was guided by the following research questions:

- What types of indigenous knowledge systems are practiced in the MWASBR?
- What challenges hinder the transmission and use of these knowledge systems?
- How do local communities perceive conservation and its relevance to their livelihoods?
- What strategies can be employed to integrate LINKS with modern conservation efforts?

Significance of Study

The study is significant for several reasons. First, it contributes to the growing body of literature that highlights the importance of LINKS in conservation and sustainable development (Berkes, Colding, & Folke, 2000). Second, it provides empirical data from communities in the MWASBR, which can inform policy and management strategies by government agencies such as the Kenya Forest Service (KFS) and KWS, as well as international frameworks under UNESCO's MAB Programme. Third, the research strengthens the case for integrating cultural and ecological perspectives, thereby promoting both biodiversity protection and community empowerment.

Scope and Limitations

The research focused on communities living in and around Malindi, Watamu, and Arabuko Sokoke. It covered diverse stakeholders, including elders, fishermen, farmers, traders, traditional healers, and youth leaders. While the study provides a broad overview of indigenous knowledge practices, it is limited by its reliance on questionnaire surveys and self-reported data, which may carry biases. Additionally, while 150 respondents provide useful insights, they represent only a fraction of the population dependent on the biosphere reserve.

Literature Review

Introduction to Local and Indigenous Knowledge Systems

Local and Indigenous Knowledge Systems (LINKS), commonly referred to as Traditional Ecological Knowledge (TEK), encompass the cumulative body of knowledge, practices, innovations, and belief systems developed by indigenous peoples and local communities through long-term interactions with their environments. These knowledge systems are transmitted across generations through oral traditions, cultural practices, rituals, and lived experiences (Berkes, 1999). Unlike conventional scientific knowledge, LINKS is deeply embedded within social, cultural, spiritual, and ethical worldviews, making it inherently holistic and context specific.

LINKS reflects an adaptive knowledge system that evolves in response to environmental, social, and economic changes. Communities continuously observe ecological patterns, test solutions, and refine practices, allowing them to respond effectively to uncertainties such as climate variability, resource scarcity, and ecosystem degradation (Berkes, Colding, & Folke, 2000). This adaptability has enabled indigenous and local communities to sustainably manage landscapes, seascapes, and biodiversity-rich ecosystems for centuries.

Globally, there is growing recognition of the critical role of LINKS in biodiversity conservation, ecosystem management, and climate change adaptation. Indigenous peoples and local communities manage or hold tenure rights over approximately 25–30 percent of the Earth’s land surface, which overlaps with some of the most biologically diverse regions globally (IPBES, 2019). These territories often exhibit lower deforestation rates and higher biodiversity integrity, highlighting the effectiveness of indigenous governance systems. Consequently, LINKS has gained prominence within global policy frameworks such as the Sustainable Development Goals (SDGs), the Convention on Biological Diversity (CBD), and UNESCO’s Man and the Biosphere (MAB) Programme (UNESCO, 2019).

Theoretical Perspectives on Indigenous Knowledge

Several theoretical frameworks have been developed to conceptualize and analyze LINKS. Gadgil, Berkes, and Folke (1993) conceptualize indigenous knowledge as an integrated knowledge practice belief system, emphasizing its adaptive and evolutionary nature. According to this framework, traditional communities engage in continuous learning through observation, experimentation, and intergenerational knowledge exchange, resulting in sustainable resource-use strategies tailored to specific ecosystems.

Berkes (1999) further advanced this understanding through the concept of sacred ecology, which highlights the inseparability of ecological management from cultural values, spiritual beliefs, and moral obligations. Sacred ecology underscores the idea that conservation outcomes are often rooted in cultural norms, taboos, rituals, and cosmologies that regulate human–nature relationships. This perspective challenges reductionist approaches to conservation that overlook cultural and ethical dimensions.

Huntington (2000) argues that TEK offers complementary insights to scientific knowledge, particularly in data-scarce or rapidly changing environments. Indigenous knowledge often provides fine scale, long term ecological observations that are difficult to capture through conventional scientific methods. In Kenya, for example, coastal communities rely on seasonal indicators, animal behavior, lunar cycles and weather patterns to guide fishing, farming, and resource use decisions. These theoretical perspectives collectively demonstrate that LINKS is not static or obsolete but rather a dynamic, evolving system capable of contributing meaningfully to contemporary conservation challenges.

Indigenous Knowledge in Biodiversity Conservation

LINKS plays a pivotal role in biodiversity conservation across terrestrial, freshwater, and marine ecosystems. In forested landscapes, indigenous communities often protect sacred groves, enforce taboos on harvesting certain species, and regulate access to forests through customary laws and institutions (Gadgil et al., 1993). Such practices contribute to habitat protection, species conservation, and ecological resilience.

Similarly, in marine and coastal systems, traditional fishing practices such as seasonal closures, gear restrictions, and spatial zoning have been shown to sustain fish stocks and reduce ecosystem degradation (Berkes, 2012). These practices are often informed by long term ecological observations and a strong ethic of intergenerational stewardship.

In Kenya, indigenous knowledge systems are deeply embedded in the management of coastal ecosystems. The Arabuko Sokoke Forest, one of the largest remaining coastal forests in East Africa, has been conserved not only through formal state led interventions but also through cultural values, sacred sites, and customary

governance systems upheld by local communities (Kenya Wildlife Service [KWS], 2002). Along the Kenyan coast, communities such as the Mijikenda, Bajuni and Swahili have historically depended on forest and marine resources, guided by norms emphasizing sustainability, reciprocity, and respect for nature.

Documentation and Erosion of Indigenous Knowledge

Despite its significance, LINKS is increasingly under threat globally. Processes such as modernization, urbanization, formal education systems, globalization and changing livelihood patterns have contributed to the erosion of indigenous knowledge, particularly among younger generations (Nakashima & Roué, 2002). As youth migrate to urban areas and adopt Western lifestyles, traditional practices, languages, and ecological knowledge risk being lost.

Findings from the MWASBR Knowledge Survey (2024) reveal similar trends, with respondents indicating a decline in the transmission of traditional knowledge. Youth engagement in wage labor, reduced reliance on subsistence livelihoods and increased dependence on modern medicine were cited as key drivers of knowledge erosion. This loss not only threatens cultural heritage but also undermines community resilience and adaptive capacity.

Documentation therefore emerges as a critical strategy for safeguarding LINKS. UNESCO and IPBES emphasize the importance of ethically documenting indigenous knowledge while ensuring community ownership, consent, and benefit-sharing (IPBES, 2019; UNESCO, 2019). However, documentation alone is insufficient unless accompanied by mechanisms that promote intergenerational transmission and practical application of the knowledge within contemporary governance frameworks.

Indigenous Knowledge and Climate Change Adaptation

LINKS has demonstrated immense value in enabling communities to adapt to climate variability and environmental change. Indigenous peoples often rely on ecological indicators such as flowering patterns, animal migrations, wind directions and cloud formations to predict rainfall patterns and seasonal cycles (Nyong, Adesina, & Elasha, 2007). These indicators provide early warning systems that inform livelihood decisions.

In coastal Kenya, such knowledge guides fishers in determining safe fishing periods and helps farmers time planting and harvesting activities. Traditional resource management practices, including agroforestry, soil conservation, mangrove restoration and water harvesting, serve as nature-based solutions that enhance ecosystem resilience to climate extremes (UNESCO, 2021).

Within the MWASBR, respondents described the use of mangrove rehabilitation, traditional fishing closures and drought-resistant crop varieties as key strategies for coping with climate stressors. These practices illustrate how LINKS contribute to climate adaptation while simultaneously supporting biodiversity conservation and livelihoods.

Policy and Institutional Context

At the global level, the integration of LINKS into environmental governance has gained increasing attention. Article 8(j) of the CBD calls for the respect, preservation, and maintenance of indigenous knowledge relevant to biodiversity conservation, as well as the equitable sharing of benefits arising from

its use (CBD, 1992). Similarly, UNESCO's MAB Programme promotes biosphere reserves as learning sites where cultural and ecological knowledge are integrated to support sustainable development (UNESCO, 2019).

In Kenya, several policy instruments provide opportunities for incorporating LINKS into conservation and resource management. The Forest Act (2005), the Wildlife Conservation and Management Act (2013) and community-based forest and fisheries management frameworks recognize the role of local communities in conservation. The Arabuko Sokoke Strategic Management Plan (2002–2027) explicitly highlights community participation and the recognition of local practices as central to sustainable forest management (KWS, 2002).

However, significant gaps remain in translating policy provisions into practice. Challenges such as weak institutional capacity, limited funding, fragmented governance structures and insufficient recognition of indigenous institutions continue to constrain effective integration of LINKS into formal conservation systems.

Empirical Studies on Indigenous Knowledge in Kenya

Empirical studies in Kenya provide substantial evidence of the effectiveness of LINKS in conservation. Githae et al. (2019) documented the role of Mijikenda traditional knowledge in conserving sacred kaya forests along the coast. These forests, recognized as UNESCO World Heritage Sites, are central to cultural identity and biodiversity conservation.

Matiku et al. (2013) examined participatory forest management in Arabuko Sokoke and demonstrated that incorporating community knowledge improved forest governance and conservation outcomes. In marine systems, studies by Obura (2001) and Ochiewo (2004) highlighted how customary marine tenure and seasonal fishing rules sustain livelihoods while reducing pressure on coral reef ecosystems.

These studies underscore that LINKS is not merely a cultural artifact but a practical and effective tool for conservation and sustainable development.

Synthesis and Knowledge Gaps

The reviewed literature clearly demonstrates the critical role of LINKS in biodiversity conservation, climate adaptation, and cultural preservation. However, several key gaps persist:

- Limited systematic documentation of LINKS within the MWASBR, particularly among youth.
- Insufficient integration of indigenous knowledge into formal conservation and policy frameworks.
- Limited empirical evidence on the complementarities between LINKS and scientific approaches.
- Weak benefit-sharing mechanisms that ensure communities gain from the application of their knowledge.

This study seeks to address these gaps by documenting and analyzing LINKS within the MWASBR, examining challenges and opportunities for integration, and providing evidence-based recommendations to strengthen sustainable conservation strategies.

Methodology

Research Design

This study employed a mixed-methods research design, combining both qualitative and quantitative approaches to capture the depth and breadth of local and indigenous knowledge systems (LINKS) in the Malindi–Watamu–Arabuko Sokoke Biosphere Reserve (MWASBR). The design was appropriate because it allowed for the collection of numerical data through questionnaires while also capturing narratives, perceptions, and cultural practices through interviews and observation (Creswell & Plano Clark, 2017).

The study was descriptive in nature, aiming to document, analyze, and interpret the role of LINKS in biodiversity conservation. A participatory approach was also adopted, recognizing community members as knowledge holders and active contributors rather than passive respondents (Chambers, 1994).

Study Population and Sampling

The study targeted residents of Malindi, Watamu, and Arabuko Sokoke communities who have a direct relationship with the biosphere reserve. This included fishers, farmers, herbalists, elders, traders, youth, and women's groups.

A total of 150 respondents were selected through purposive and stratified random sampling. Purposive sampling ensured the inclusion of key knowledge holders such as traditional healers and community elders, while stratified random sampling was used to ensure representation across gender, age groups, and occupations. This combination provided a balance between inclusivity and representativeness (Patton, 2002).

Study Area

The Malindi–Watamu–Arabuko Sokoke Biosphere Reserve (MWASBR) is located along the northern coast of Kenya within Kilifi County, approximately 110 kilometers north of Mombasa. The biosphere reserve was designated by UNESCO in 2000 under the Man and the Biosphere (MAB) Programme, recognizing its exceptional ecological, cultural, and socioeconomic value.

The reserve encompasses an area of approximately 326 km², integrating three main ecosystems:

- The Arabuko Sokoke Forest – a tropical dry coastal forest covering about 420 km², representing one of the largest and most intact remnants of the East African coastal forests.
- The Watamu Marine National Park and Reserve – an important marine ecosystem featuring coral reefs, mangroves, and seagrass beds that support diverse marine life.
- The Malindi Marine National Park – known for its rich coral formations, fish species, and birdlife, forming part of the Western Indian Ocean marine corridor.

The MWASBR supports multiple livelihoods, including fishing, subsistence farming, ecotourism, and small-scale trade. Communities surrounding the reserve are mainly from the Mijikenda, Swahili, and Bajuni ethnic groups, whose traditional knowledge systems have contributed to resource management and cultural identity.

Climatically, the region experiences a tropical coastal climate, with two main rainy seasons: the long rains (April–June) and short rains (October–December). Temperatures range between 22°C and 30°C, and the average annual rainfall is approximately 1,000 mm.

Ecologically, the reserve hosts numerous endemic and threatened species, including the Sokoke scops owl (*Otus ireneae*), Amani sunbird (*Hedydipna pallidigaster*), and *Golden-rumped* elephant shrew (*Rhynchocyon chrysopygus*). Its marine ecosystems harbor coral reefs, turtles, and seagrasses vital for biodiversity and coastal protection.

Administratively, the MWASBR is managed through a multi-stakeholder framework involving the Kenya Wildlife Service (KWS), Kenya Forest Service (KFS), Kenya Marine and Fisheries Research Institute (KMFRI), National Museums of Kenya (NMK), and community-based organizations such as Community Forest Associations (CFAs) and Beach Management Units (BMUs). This mosaic of ecosystems and management actors provides a rich platform for studying the interaction between local and indigenous knowledge systems and modern conservation practices, which formed the core focus of this research.

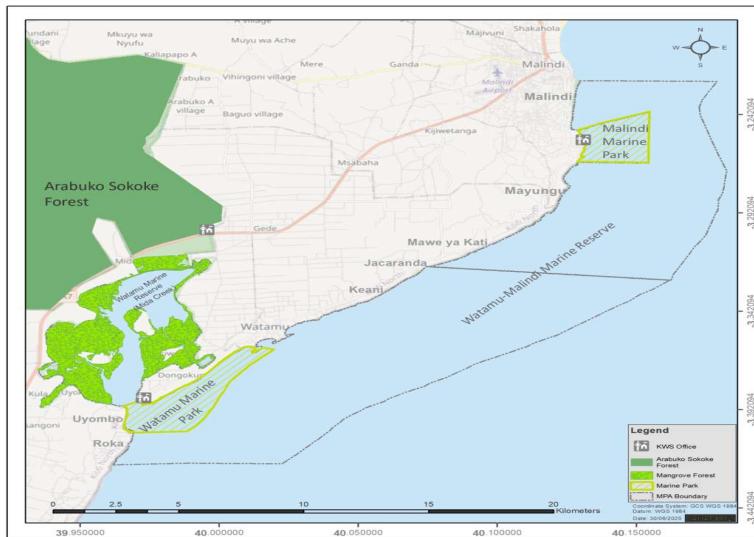


Plate 1: Map of Malindi Watamu Arabuko Biosphere reserve.

Data Collection Methods

Questionnaires: Structured questionnaires with both closed and open-ended questions were administered to 150 respondents. The questionnaires captured demographic information, types of indigenous knowledge practiced, challenges faced, and community perspectives on conservation.

Interviews and Focus Group Discussions (FGDs): Semi-structured interviews were conducted with community elders, forest user groups, and fisher associations to gain deeper insights into cultural practices. FGDs were held with youth and women's groups to understand generational and gendered perspectives on knowledge transmission.

Field Observations: Direct observations were made in farms, fishing sites, mangrove areas, and community forests. This method allowed the researcher to validate responses and witness indigenous practices firsthand, such as sacred site preservation and mangrove planting.

Document Review: Relevant secondary sources were reviewed, including the Arabuko Sokoke Strategic Management Plan (2002–2027), UNESCO publications, and previous research on LINKS and conservation in Kenya. These documents provided context and supported triangulation of findings.

Data Analysis

Quantitative data from the questionnaires were coded and analyzed using SPSS. Descriptive statistics such as frequencies, percentages, and cross-tabulations were generated to summarize demographic characteristics and response patterns. Data visualization was prepared in the form of tables and charts (included in Appendices).

Qualitative data from interviews, FGDs, and observations were transcribed, coded, and thematically analyzed. Emerging themes included traditional ecological indicators, conservation taboos, medicinal knowledge, and challenges such as modernization and climate change. Triangulation was employed to cross-verify insights across multiple sources and methods (Denzin, 1978).

Ethical Considerations

Ethical research principles were strictly observed. Prior informed consent was obtained from all respondents before data collection. Community leaders and elders were engaged in advance to explain the purpose of the study and seek approval. Respondents were assured of confidentiality, and no identifying information was included in the final report.

Furthermore, the study adhered to the principles of respect and reciprocity in working with indigenous knowledge holders, ensuring that information was treated with sensitivity and respect for cultural norms (UNESCO, 2019).

Limitations of Methodology

Several limitations were encountered during the study:

- **Time constraints:** Due to limited resources, the duration of fieldwork was restricted, which may have limited deeper engagement with some communities.
- **Language barriers:** While Kiswahili was widely used, translation was necessary in some cases where local dialects (e.g., Giriama) were preferred. This may have affected the precision of responses.
- **Self-reporting bias:** Some respondents may have exaggerated or underreported their use of indigenous knowledge, particularly in sensitive areas such as traditional healing.

Despite these limitations, the methodological approach was robust and provided a reliable basis for understanding indigenous knowledge systems in the MWASB

Results And Analysis

Introduction

This section presents the results of the study based on 150 questionnaires, interviews, focus group discussions, and field observations conducted in the Malindi–Watamu–Arabuko Sokoke Biosphere Reserve (MWASBR). The findings are organized around four key themes: (1) demographic characteristics of respondents, (2) indigenous knowledge systems identified, (3) challenges facing knowledge preservation and application, and (4) community-driven solutions for conservation.

Types of Indigenous Knowledge Systems Practiced

Out of the 150 respondents, 52 (34.7%) identified traditional fishing practices as the most common form of indigenous knowledge. Sacred forests and cultural sites were cited by 38 respondents (25.3%), medicinal plant knowledge by 34 respondents (22.7%), and seasonal and climate indicators by 26 respondents (17.3%).

Plate 2: A graph illustrating types of indigenous knowledge practiced

Challenges Facing the Preservation of Indigenous Knowledge

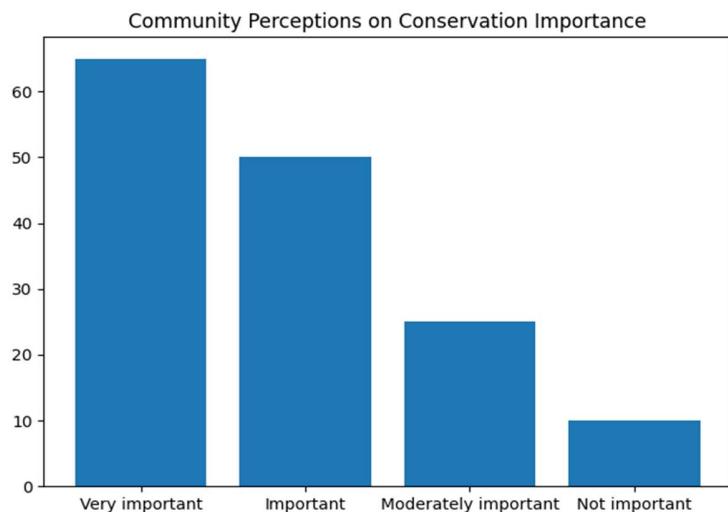

Youth disinterest emerged as the leading challenge, reported by 45 respondents (30%). Modernization was cited by 40 respondents (26.7%), lack of documentation by 35 respondents (23.3%), and policy and institutional neglect by 30 respondents (20%).

Plate 3: A graph illustrating challenges facing knowledge preservation

Community Perceptions on Conservation

Most respondents demonstrated positive perceptions towards conservation. Sixty-five respondents (43.3%) rated conservation as very important, 50 respondents (33.3%) as important, 25 respondents (16.7%) as moderately important, and 10 respondents (6.7%) as not important.

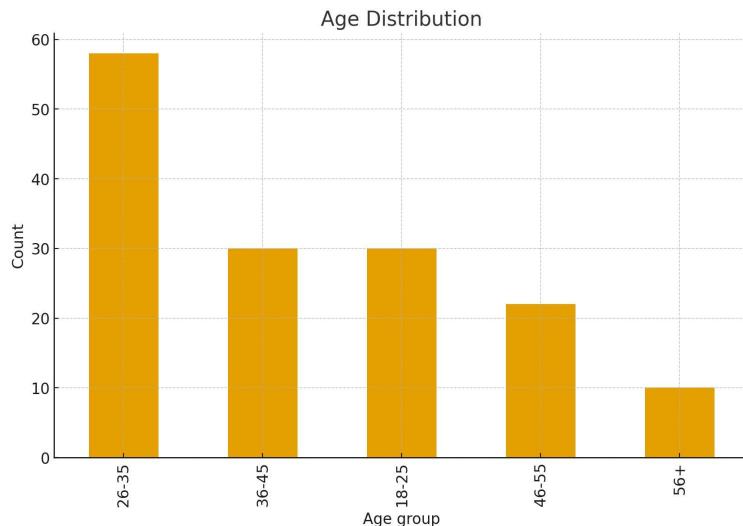


Plate 4: A graph illustrating community perception on conservation

Demographic Characteristics of Respondents

A total of 150 respondents participated in the survey, comprising a broad cross-section of community members.

- *Gender:* Out of the respondents, 54% were male and 46% were female. This distribution reflects the participation of both men and women in knowledge systems, though men were slightly more represented in areas related to fishing and forest use, while women were more engaged in medicinal knowledge and farming practices.
- *Age:* Respondents ranged from 18 to over 65 years. A majority (38%) were aged between 36–55 years, followed by 32% aged 18–35, and 30% aged above 55. Older respondents were more likely to be custodians of indigenous knowledge, whereas younger respondents exhibited varying levels of knowledge but expressed interest in modern conservation approaches. Respondents were mainly aged 26–35 years (39%) and female (52%).

Plate 5: A bar graph illustrating age distribution of respondents

- *Occupations:* The main occupations included artisanal fishing (28%), farming (25%), small-scale trade (20%), traditional healing (10%), and others such as tourism and craftwork (17%). The diversity of occupations highlights the wide range of livelihood activities connected to the biosphere reserve.
- *Education Level:* About 45% of respondents had completed primary education, 30% had secondary education, 15% had no formal education, and 10% had tertiary education. Respondents with lower formal education tended to rely more on indigenous practices, whereas those with higher education often favored blending traditional and scientific approaches.

Local and Indigenous Knowledge Systems Identified

The study revealed several forms of indigenous knowledge systems (LINKS) in practice within the MWASBR.

Forest and Medicinal Knowledge

Elders and herbalists reported extensive use of forest plants for traditional medicine. Commonly cited species included.

- *Mwarobaini (Azadirachta indica)* -for malaria,
- *Mkilifi (Combretum schumanii)*- for digestive issues
- Mangrove -bark for wound healing.
- *Mrifi (Combretum constrictum)*- Used as a traditional remedy for malaria and stomach disorders; wood used for fencing.
- *Mti wa mkangazi (Terminalia spinosa)* -Bark and roots used for treating respiratory infections and as a general tonic. Common in dry woodlands near Arabuko Sokoke.
- *Mkunde wa pori (Combretum aculeatum)* Decoction from bark used for fever, diarrhea, and general body pain. Found in dry coastal and savanna regions.
- *Xylocarpus granatum* (Cannonball Mangrove): This species is explicitly reported by local communities for its medicinal uses, and its bark and seeds are often used to treat stomach ailments and fever.

Oral transmission of plant knowledge remains the primary mode of preservation, though respondents noted a decline in intergenerational transfer.

Plate 6: Xylocarpus granatum (Cannonball Mangrove)

Sacred Groves and Taboos

Communities, particularly the Mijikenda, continue to maintain sacred kaya forests where entry and resource use are restricted. These groves serve as biodiversity refuges, protecting both cultural and ecological heritage. Taboos, such as prohibitions against cutting trees in certain areas or killing specific species, were seen as effective conservation tools. Among the common taboos observed in these sacred groves are:

- Prohibition of cutting trees within the Kaya without elder approval.
- Restrictions on entering the forest without performing purification rituals.
- Ban on killing or disturbing certain species regarded as sacred or linked to clan totems.
- Prohibition of grazing or farming near sacred zones to prevent desecration.

These practices have indirectly conserved rare and endemic species of plants and animals, including medicinal trees such as Mkilifi (*Combretum schumanii*), Mwarobaini (*Azadirachta indica*), and Mkilua (*Maerua edulis*). The Kaya forests' dense canopies also support biodiversity corridors linking Arabuko Sokoke Forest with surrounding landscapes.

Plate 7: Sacred Mijikenda Kaya Forest

Traditional Fishing Practices:

Fishermen respondents described indigenous methods of regulating fishing, including seasonal restrictions aligned with monsoon winds and lunar cycles. Certain gear types, such as basket traps and hand lines, were considered more sustainable compared to modern destructive gears like beach seines.

Agricultural Knowledge

Farmers reported the use of indigenous drought-resistant crops such as millet and cassava. Soil fertility was maintained through organic composting and intercropping. Some respondents also mentioned shifting cultivation practices, although these are less common today.

Ecological Indicators and Weather Prediction:

Traditional weather forecasting methods were widely reported. For example, the flowering of specific trees indicated impending rainfall, while bird migrations and wind patterns signaled seasonal changes. Fishers relied on moon phases and tidal cycles to plan fishing expeditions.

Oral Traditions and Storytelling:

Knowledge was often passed down through songs, proverbs, and folktales. Respondents emphasized that these traditions instilled conservation ethics, especially among children.

The Tale of the Kaya Forest Spirits Elders tell of ancestral spirits who dwell within the Kaya forests guardians who bless those who respect the land but curse those who destroy it. This story discourages illegal logging and reinforces taboos against desecrating sacred sites.

The Fisherman and the Sea Goddess (Mama Pwani) Among the Swahili and Bajuni fishers of Watamu, a popular tale describes a sea goddess who rewards sustainable fishers and punishes those who overharvest or pollute the ocean. The story promotes responsible fishing and respect for marine life.

Proverbs (Methali za Mijikenda/Swahili)

- “*Mti haukatwi ukingali mchanga*” – “A tree is not cut while it is still young.” → Encourages patience and sustainability in resource use.
- “*Bahari haishi mawimbi*” – “The sea never lacks waves.” → Symbolizes nature’s constancy and the need to adapt to its rhythms.
- “*Mcheza kwao hutunzwa*” – “One who cares for their home is respected.” → Reinforces the duty to care for one’s environment.
- *Songs and Chants* Traditional songs, such as those performed by women’s groups during farming and fishing seasons, praise the fertility of the land and sea while warning against disrespecting nature. These songs serve both as entertainment and ecological education for younger generations.

Totemic Animal Stories

Some clans identify spiritually with specific animals, such as the tortoise, elephant, or owl. Tales warn against harming these species, associating them with wisdom, protection, and ancestral guidance — thus indirectly promoting species conservation. Oral traditions dominated knowledge transmission, followed by community meetings and cultural events.

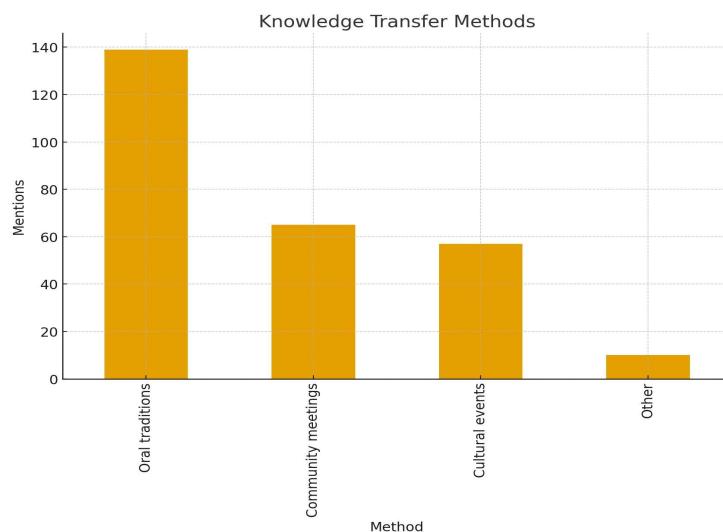
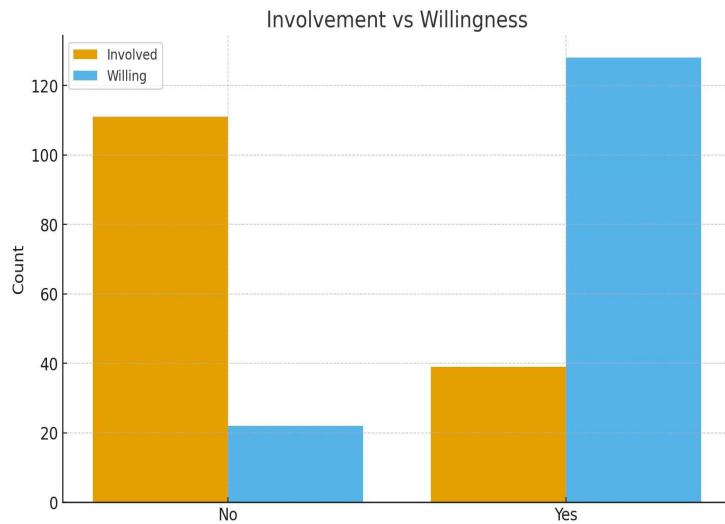


Plate 8: Bar graph showing knowledge transfer methods

Challenges Facing Indigenous Knowledge Systems

Respondents highlighted several challenges threatening the continuity of LINKS in the MWASBR:

- *Erosion of Knowledge*: The most frequently cited challenge was the decline of intergenerational transfer, as younger people increasingly relied on modern technologies and education systems.
- *Deforestation and Habitat Loss*: Loss of forests and sacred groves reduced access to medicinal plants and wildlife traditionally used in rituals and livelihoods.
- *Climate Change*: Unpredictable weather patterns were said to undermine traditional forecasting methods, leading to decreased reliability of ecological indicators.
- *Overexploitation of Resources*: Modern fishing gears and commercial exploitation of forest resources were reported to undermine traditional regulations.
- *Cultural Change*: Urbanization, tourism, and modernization were leading to the abandonment of traditional customs, rituals, and taboos.
- *Policy Gaps*: Respondents expressed concern that government policies often prioritize scientific knowledge and marginalize community traditions.


Community-Driven Solutions

Respondents proposed several solutions to strengthen LINKS and conservation efforts:

- *Documentation of Knowledge*: Communities suggested the systematic recording of medicinal plants, traditional fishing rules, and sacred sites to prevent knowledge loss.
- *Youth Engagement*: Involving schools, cultural associations, and youth groups in conservation activities was seen as essential for knowledge transmission.
- *Integration of IKS and Science*: Respondents emphasized that blending traditional practices with modern science (e.g., combining local weather forecasts with meteorological data) could enhance conservation effectiveness.
- *Community Education*: Awareness campaigns on the value of indigenous knowledge for sustainable livelihoods were recommended.
- *Alternative Livelihoods*: Initiatives such as ecotourism, beekeeping, and aquaculture were identified as ways to reduce pressure on natural resources.
- *Policy Support*: Strengthening community forest associations and marine co-management frameworks was recommended to give communities a greater role in decision-making.

Summary of Findings

The findings highlight that indigenous knowledge remains a living and dynamic system in the MWASBR, though it faces significant threats from modernization, environmental change, and policy neglect. Communities still practice a range of knowledge systems related to forests, fisheries, farming, and cultural traditions, but these practices require urgent support and revitalization. Importantly, respondents expressed strong willingness to sustain LINKS if supported through documentation, education, and integration into conservation policies.

Plate 9: Bar graph showing level of involvement versus willingness

Discussion

Introduction

The purpose of this study was to explore the role of indigenous knowledge systems (LINKS) in the conservation of the Malindi–Watamu–Arabuko Sokoke Biosphere Reserve (MWASBR). The results highlight both the persistence and fragility of LINKS, demonstrating how local communities continue to use traditional practices while facing growing challenges of modernization, climate change, and policy neglect. This section discusses the findings in relation to existing literature, identifies areas of convergence and divergence, and situates the study within broader conservation and development debates.

The Relevance of LINKS in Biodiversity Conservation

Findings revealed that LINKS remains central to the management of forests, marine resources, and agricultural systems in the MWASBR. For example, the continued reliance on medicinal plants and sacred groves mirrors global evidence that indigenous knowledge contributes to biodiversity protection by conserving species and habitats (Gadgil, Berkes, & Folke, 1993; Berkes, 1999). Sacred kaya forests, maintained by the Mijikenda, not only hold cultural significance but also serve as biodiversity refuges—similar to sacred groves found in West Africa and India (Ormsby, 2012).

The results also showed that traditional fishing practices, such as seasonal closures and the use of sustainable gear, reflect adaptive resource management strategies. This aligns with Berkes, Colding, and Folke's (2000) argument that TEK functions as a form of adaptive management, enabling communities to respond to ecological feedback. In the MWASBR, these practices contribute to sustaining fish populations, complementing scientific fisheries management measures.

Erosion of Indigenous Knowledge and Cultural Change

The study confirmed that IKS in the MWASBR is under threat, primarily due to modernization, urbanization, and generational change. Respondents emphasized that younger generations are less engaged in traditional practices, preferring modern medicine, wage labor, and tourism-related livelihoods. This echoes Nakashima and Roué (2002), who noted that globalization and formal education often marginalize indigenous systems of knowledge.

Climate change was also identified as a major factor undermining traditional ecological forecasting methods. Communities reported that seasonal indicators, such as bird migrations or flowering patterns, have become less reliable due to shifting climatic conditions. Similar patterns have been documented in other African contexts, where traditional weather forecasting is increasingly disrupted by climate variability (Nyong, Adesina, & Elasha, 2007). This highlights the urgent need to integrate IKS with scientific climate data, ensuring that both systems reinforce rather than contradict one another.

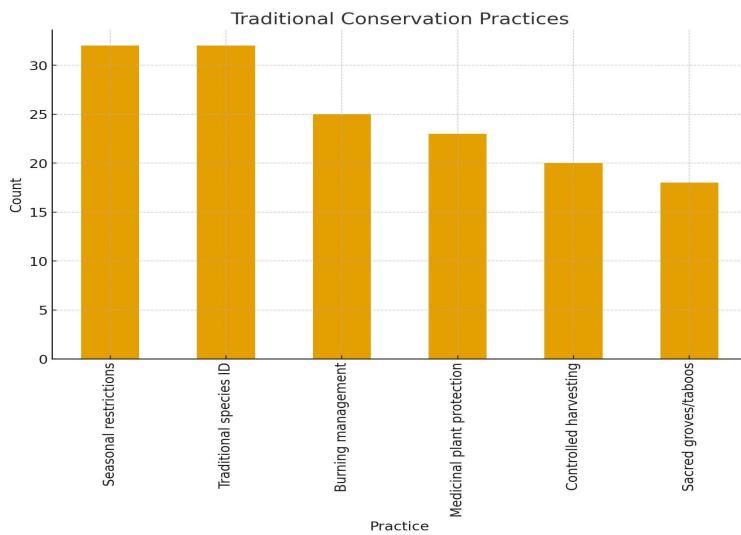
Integration of LINKS and Scientific Knowledge

A key insight from this study is that communities do not view LINKS and scientific knowledge as mutually exclusive. Respondents expressed a strong preference for hybrid approaches, where traditional practices are validated and supported by scientific evidence. For instance, local fishers suggested combining lunar-based fishing calendars with modern meteorological forecasts, while farmers advocated blending indigenous soil fertility practices with modern agricultural inputs.

This reflects the growing body of scholarship advocating for “knowledge co-production,” where LINKS and science are integrated to produce more holistic conservation strategies (Tengö et al., 2014). In biosphere reserves, such integration is not only desirable but necessary, as they are explicitly designed as “learning laboratories” for bridging cultural and scientific approaches (UNESCO, 2019).

Policy and Institutional Dimensions

The findings demonstrate that while Kenyan policies acknowledge community participation in conservation, implementation remains weak. Respondents expressed frustration that government agencies often prioritize top-down approaches, leaving little room for community-driven knowledge. This is consistent with Matiku, Mireri, and Ongugo (2013), who found that participatory forest management in Arabuko Sokoke improved outcomes only when communities were genuinely involved in decision-making.


The Convention on Biological Diversity (CBD) Article 8(j) emphasizes the need to respect and preserve indigenous knowledge relevant to biodiversity. However, as seen in the MWASBR, operationalizing this principle requires not only recognition but also legal, financial, and institutional mechanisms that ensure communities benefit from their knowledge (CBD, 1992). Without such support, indigenous practices risk being undermined or commodified.

The Role of Communities in Conservation Futures

Perhaps the most significant contribution of this study is the recognition that communities are willing and capable of sustaining LINKS if provided with support. Respondents proposed concrete solutions, such as documenting knowledge, engaging youth, and promoting alternative livelihoods. This reflects broader

debates in conservation that emphasize community empowerment and rights-based approaches (Brosius, Tsing, & Zerner, 2005).

Furthermore, the integration of LINKS into ecotourism, education, and cultural heritage initiatives offers opportunities to sustain both livelihoods and conservation. Kaya forests, for example, could serve as cultural tourism sites while maintaining their sacred status. Similarly, traditional fishing taboos could be incorporated into marine co-management frameworks. Common practices: sacred groves, controlled harvesting, seasonal restrictions.

Plate 10: Bar graph illustrating the traditional conservation practices

Synthesis

Overall, the study confirms that LINKS is not a relic of the past but a dynamic and adaptive system of knowledge with contemporary relevance. However, its survival depends on deliberate efforts to safeguard, document, and integrate it within formal conservation frameworks. The MWASBR thus provides a critical case study for understanding how cultural and ecological knowledge can be combined to foster resilience in both ecosystems and communities.

Conclusion

This study examines the role and significance of Local and Indigenous Knowledge Systems (LINKS) in biodiversity conservation, climate change adaptation, and sustainable resource management within the Malindi–Watamu–Arabuko Sokoke Biosphere Reserve (MWASBR). Specifically, the research aimed to document existing indigenous knowledge practices, assess their contribution to conservation outcomes, examine challenges affecting their transmission and application, and explore opportunities for integrating LINKS into formal conservation frameworks.

The findings unravel that communities within the MWASBR possess extensive indigenous knowledge related to forest conservation, marine resource management, medicinal plants climate forecasting and sustainable livelihoods. Practices such as the protection of sacred sites, mangrove restoration, traditional

fishing closures, agroforestry and the use of ecological indicators for seasonal planning continue to play a critical role in maintaining ecosystem health and biodiversity. These practices underscore climate resilience, food security, and the sustainable use of natural resources.

However, the study also discovered that indigenous knowledge systems are increasingly under threat. Key challenges include weak intergenerational knowledge transfer, socio-economic pressures, declining youth participation and limited recognition of indigenous institutions within formal conservation and policy frameworks. Although national and international policies acknowledge the importance of indigenous knowledge, their implementation within the MWASBR remains inconsistent and fragmented.

Overall, the study concludes that Local and Indigenous Knowledge Systems remain highly relevant and effective for conservation and climate adaptation in the MWASBR. Their continued erosion, however, poses a significant risk to both cultural heritage and long-term ecosystem sustainability. Strengthening the documentation, transmission, and integration of LINKS alongside scientific approaches is therefore essential for achieving inclusive, resilient, and sustainable conservation outcomes

Recommendations

Based on the conclusions, the following recommendations are proposed to enhance the recognition, application and sustainability of Local and Indigenous Knowledge Systems within the MWASBR:

Policy and Governance

Biosphere reserve management authorities and relevant government agencies should strengthen the implementation of existing policies that recognize indigenous knowledge, including the Convention on Biological Diversity (CBD) and the UNESCO Man and the Biosphere (MAB) Programme. Indigenous governance structures and customary rules should be formally recognized and incorporated into conservation planning and decision-making processes.

Practice Conservation Management

Conservation practitioners and organizations should integrate indigenous knowledge into day-to-day conservation activities, restoration initiatives, including ecosystem monitoring and climate adaptation strategies. Co-management and participatory approaches that combine scientific methods with indigenous practices should be promoted to enhance conservation effectiveness and community ownership.

Documentation and Knowledge Preservation

The need for systematic and ethical documentation of indigenous knowledge within the MWASBR is inevitable, calling for participatory approaches to be integrated to ensure that communities retain ownership of their knowledge and benefit from its application. Digital platforms, community archives and educational materials can support long-term knowledge preservation.

Youth Engagement and Capacity Building

Targeted programs should be developed to promote intergenerational knowledge transfer by actively engaging youth. This includes school-based environmental education, mentorship initiatives, cultural

exchange forums and youth-led conservation projects. Strengthening youth involvement will ensure continuity and innovation in conservation practices.

Benefit Sharing and Livelihood Support

Equitable benefit sharing mechanisms should be established to ensure that communities benefit from the use of their knowledge. Linking indigenous practices to sustainable livelihood opportunities such as Eco-tourism, value-added natural products and climate-smart enterprises will enhance community motivation and conservation outcomes.

Future Research

Further research is recommended to assess the long-term impacts of integrating indigenous knowledge with scientific approaches in biosphere reserve management. Longitudinal studies focusing on youth, women, and marginalized groups would provide deeper insights into knowledge transmission, adaptation, and conservation effectiveness.

References

Berkes, F. (1999). *Sacred Ecology*. Taylor & Francis.

Berkes, F. (2012). Implementing ecosystem-based management: Evolution or revolution? *Fish and Fisheries*, 13(4), 465–476.

Berkes, F., Colding, J., & Folke, C. (2000). Rediscovery of traditional ecological knowledge as adaptive management. *Ecological Applications*, 10(5), 1251–1262.

CBD. (1992). *Convention on Biological Diversity*. United Nations.

Gadgil, M., Berkes, F., & Folke, C. (1993). Indigenous knowledge for biodiversity conservation. *Ambio*, 22(2-3), 151–156.

Githae, E. W., Waweru, P. K., & Muthuri, C. W. (2019). Sacred kaya forests of the Mijikenda: Community-based conservation along the Kenya coast. *Journal of East African Natural History*, 108(1), 45–57.

Huntington, H. P. (2000). Using traditional ecological knowledge in science: Methods and applications. *Ecological Applications*, 10(5), 1270–1274.

IPBES. (2019). *Global Assessment Report on Biodiversity and Ecosystem Services*. Bonn: IPBES Secretariat.

Kenya Wildlife Service. (2002). *Arabuko Sokoke Forest Strategic Management Plan (2002–2027)*. Nairobi: KWS.

Matiku, P., Mireri, C., & Ongugo, P. (2013). The impact of participatory forest management on local community livelihoods in the Arabuko Sokoke Forest, Kenya. *Conservation & Society*, 11(2), 112–129.

Nakashima, D., & Roué, M. (2002). Indigenous knowledge, peoples and sustainable practice. In *Encyclopedia of Global Environmental Change* (Vol. 5). Wiley.

Nyong, A., Adesina, F., & Elasha, B. O. (2007). The value of indigenous knowledge in climate change mitigation and adaptation strategies in Africa. *Mitigation and Adaptation Strategies for Global Change*, 12(5), 787–797.

Obura, D. O. (2001). Participatory monitoring of shallow tropical marine fisheries by artisanal fishers in Kenya. *Bulletin of Marine Science*, 69(2), 777–791.

Ochiewo, J. (2004). Changing fisheries practices and their socio-economic implications in south coast Kenya. *Ocean & Coastal Management*, 47(7–8), 389–408.

UNESCO. (2019). *Local and Indigenous Knowledge Systems (LINKS) Programme*. Paris: UNESCO.

UNESCO. (2021). Exploring the Malindi–Watamu–Arabuko Sokoke Biosphere Reserve. Paris: UNESCO.

APPENDICES

Plate 1a: Arabuko Forest road

Plate 2a: Watamu women responding to questionnaires

Plate 3a: A group of Malindi community members receiving a briefing before administering questionnaires

Plate 4a: Watamu men responding to questionnaire

Plate 5a: *Rhizophora mucronata* mangrove species in Malindi

Plate 6a: *Rhizophora* mangle restoration in Malindi